Integral Monsky-washnitzer Cohomology and the Overconvergent De Rham-witt Complex
نویسنده
چکیده
In their paper which introduced Monsky-Washnitzer cohomology, Monsky and Washnitzer described conditions under which the definition can be adapted to give integral cohomology groups. It seems to be well-known among experts that their construction always gives well-defined integral cohomology groups, but this fact also does not appear to be explicitly written down anywhere. In this paper, we prove that the integral Monsky-Washnitzer cohomology groups are well-defined, for any nonsingular affine variety over a perfect field of characteristic p. We then compare these cohomology groups with overconvergent de RhamWitt cohomology. It was shown earlier that if the affine variety has small dimension relative to the characteristic of the ground field, then the cohomology groups are isomorphic. We extend this result to show that for any nonsingular affine variety, regardless of dimension, we have an isomorphism between integral Monsky-Washnitzer cohomology and overconvergent de Rham-Witt cohomology in degrees which are small relative to the characteristic.
منابع مشابه
Overconvergent De Rham-witt Cohomology
The goal of this work is to construct, for a smooth variety X over a perfect field k of finite characteristic, an overconvergent de Rham-Witt complex W ΩX/k as a suitable subcomplex of the de RhamWitt complex of Deligne-Illusie. This complex, which is functorial in X, is a complex of étale sheaves and a differential graded algebra over the ring W (OX) of overconvergent Witt-vectors. If X is aff...
متن کاملThe Monsky-Washnitzer cohomology and the de Rham cohomology
The author constructs a theory of dagger formal schemes over R and then defines the de Rham cohomology for flat dagger formal schemes X with integral and regular reductions X̄ which generalizes the MonskyWashnitzer cohomology. Finally the author gets Lefschetz’ fixed pointed formula for X with certain conditions.
متن کاملA comparison of logarithmic overconvergent de Rham-Witt and log-crystalline cohomology for projective smooth varieties with normal crossing divisor
In this note we derive for a smooth projective variety X with normal crossing divisor Z an integral comparison between the log-crystalline cohomology of the associated log-scheme and the logarithmic overconvergent de Rham-Witt cohomology defined by Matsuue. This extends our previous result that in the absence of a divisor Z the crystalline cohomology and overconvergent de Rham-Witt cohomology a...
متن کاملOverconvergent Witt Vectors
Let A be a finitely generated algebra over a field K of characteristic p > 0. We introduce a subring W †(A) ⊂ W (A), which we call the ring of overconvergent Witt vectors and prove its basic properties. In a subsequent paper we use the results to define an overconvergent de Rham-Witt complex for smooth varieties over K whose hypercohomology is the rigid cohomology.
متن کاملFiniteness of De Rham Cohomology in Rigid Analysis
For a large class of smooth dagger spaces—rigid spaces with overconvergent structure sheaf—we prove finite dimensionality of de Rham cohomology. This is enough to obtain finiteness of P. Berthelot’s rigid cohomology also in the nonsmooth case. We need a careful study of de Rham cohomology in situations of semistable reduction. Introduction Let R be a complete discrete valuation ring of mixed ch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014